CHARACTERIZATION OF A POINT ON SURFACE BY GEOLOGIC UNITS NEIGHBOURING AROUND IT

Tatsuya Nemoto ${ }^{1}$, Shinji Masumoto ${ }^{1}$ and Kiyoji Shiono ${ }^{1}$
${ }^{1}$ Department of Geosciences, Graduate School of Science, Osaka City University
3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Email: tnemoto@sci.osaka-cu.ac.jp

Abstract

A concept of geologic units neighbouring around a point on surface and a function which assigns geologic units neighbouring around a point to the point, which is termed neighbourhood function, have been introduced to characterize a point on surface. The characterized points can be classified as a group of points which compose a specific geologic boundary surface. The algorithm for finding geologic units neighbouring around a point on surface is presented. Further, a method for classifying points on surface as a group of points which compose a specific geologic boundary surface is shown.

1. INTRODUCTION

Geologic boundary surfaces and geologic boundary lines are important elements which compose a three-dimensional geologic model. Shiono et al. (2004) have presented mathematical expression of geologic boundary surface and line based on the logical model of geologic structure by introducing the concept of a closure in topology. As another approach, a concept of geologic units neighbouring around a point on surface and a function which assigns geologic units neighbouring around a point to the point, which is termed neighbourhood function, are introduced to extract specific geologic boundary surface and line. If a point on surface is characterized by geologic units neighbouring around it, points on the surface can be classified as a group of points which compose a specific geologic boundary surface. An algorithm for finding geologic units neighbouring around a point on surface is presented. Further, a method for classifying points on surface as a group of points which compose specific geologic boundary surface and line is shown.

2. BASIC THEORY

2.1 Logical model of geologic structure and geologic function

Let a 3-D subspace Ω be a survey area and suppose that the area Ω is composed of n geologic units that are disjoint:

$$
\begin{gather*}
b_{1} \cup b_{2} \cup \cdots \cup b_{n}=\Omega, \tag{1}\\
b_{i} \cap b_{j}=\phi(i \neq j) . \tag{2}
\end{gather*}
$$

(b)

	S_{1}	S_{2}
b_{1}	0	0
b_{2}	1	0
b_{3}	$*$	1

(c)

minset	unit
m_{00}	b_{1}
m_{01}	b_{3}
m_{10}	b_{2}
m_{11}	b_{3}

Figure 1. Basic elements of a geologic model. (a) relation between geologic units and surfaces in geologic section, (b) logical model ($1 ; S_{i}^{+}, 0 ; S_{i}^{-}$, *; no specific relation with the surface.), (c) relational code table.

A geologic function g which assigns a unique geologic unit to every point in the 3-D space Ω has been introduced (Masumoto et al., 2004). The geologic function g is used to realize a 3-D geologic visualization in the GIS environment.

$$
\begin{equation*}
g: \Omega \rightarrow B, \quad \text { where } B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \tag{3}
\end{equation*}
$$

Fundamentals of the geologic function g is explained using a simple geologic structure composed of three geologic units as shown in Figure 1(a). Three geologic units b_{1}, b_{2} and b_{3} are defined by two boundary surface S_{1} and S_{2} which divide Ω into two subspaces as follow;

$$
\begin{equation*}
b_{1}=S_{1}^{-} \cap S_{2}^{-}, \quad b_{2}=S_{1}^{+} \cap S_{2}^{-}, \quad b_{3}=S_{2}^{+}, \tag{4}
\end{equation*}
$$

where S_{i}^{+}and S_{i}^{-}give subspaces that lie above and below the surface S_{i}, respectively. These equations can be expressed in a tabular form as shown in Figure 1(b). The above equations and table define the relation between geologic units and boundary surfaces. This logical relation is termed "the logical model of geologic structure" (Sakamoto et al., 1993).

As the geologic units $b_{1}, b_{2}, \ldots, b_{n}$ are defined by surfaces, they can be expressed in a "minset standard form" (Gill, 1976). The minset is a minimum subspace that is divided by the boundary surfaces $S_{1}, S_{2}, \ldots, S_{p}$ in the 3-D space Ω. Let $m_{d 1 d 2 \ldots d p}$ be a minset defined by;

$$
\begin{equation*}
m_{d 1 d 2 \ldots d p}=h_{1}\left(d_{1}\right) \cap h_{2}\left(d_{2}\right) \cap \ldots \cap h_{p}\left(d_{p}\right), \tag{5}
\end{equation*}
$$

$$
\text { Where } h_{i}\left(d_{i}\right)=\left\{\begin{array}{l}
S_{i}^{+} ; d_{i}=1 \\
S_{i}^{-} ; d_{i}=0
\end{array}\right\} \text {. }
$$

In the case of Figure 1(a), four minsets can be defined as follows;

$$
\begin{equation*}
m_{00}=S_{1}^{-} \cap S_{2}^{-}, \quad m_{01}=S_{1}^{-} \cap S_{2}^{+}, \quad m_{10}=S_{1}^{+} \cap S_{2}^{-}, \quad m_{11}=S_{1}^{+} \cap S_{2}^{+} . \tag{6}
\end{equation*}
$$

The minset standard forms can be derived for the geologic units as follows;

$$
\begin{equation*}
b_{1}=m_{00}, \quad b_{2}=m_{10}, \quad b_{3}=m_{01} \cup m_{11} . \tag{7}
\end{equation*}
$$

It is evident that each minset is included in only one of geologic units as shown below;

$$
\begin{equation*}
m_{00} \subset b_{1}, \quad m_{01} \subset b_{3}, \quad m_{10} \subset b_{2}, \quad m_{11} \subset b_{3} . \tag{8}
\end{equation*}
$$

The relation between minsets and geologic units can be expressed by a function g_{1} from a class of minsets M into B :

$$
\begin{equation*}
g_{1}: M \rightarrow B . \tag{9}
\end{equation*}
$$

The function g_{1} can be represented by the relational code table shown in Figure 1(c).
Further, for a point $P(x, y, z)$ in a space Ω, a minset $m_{d 1 d 2 \ldots d p}$ can be assigned a value of $d_{i}=1$ or $d_{i}=0$ depending on whether $P(x, y, z)$ falls in S_{i}^{+}or S_{i}^{-}, respectively. This correspondence between every point in Ω and minsets is expressed by a function g_{2} :

$$
\begin{equation*}
g_{2}: \Omega \rightarrow M . \tag{10}
\end{equation*}
$$

Consequently, a convolution of functions $g_{1}: M \rightarrow B$ and $g_{2}: \Omega \rightarrow M$ provides a rule to define the geologic unit that includes a given point $P(x, y, z)$:

$$
\begin{equation*}
g(x, y, z)=g_{1}\left(g_{2}(x, y, z)\right) . \tag{11}
\end{equation*}
$$

The function $g: \Omega \rightarrow B$ defines a rule to assign a unique geologic unit to every point in a 3-D space Ω.

2.2 Neighbourhood function

2.2.1 Neighbourhood function of functiong

An open ball of radius ε centred at point X is called ε-neighbourhood of X and is denoted by $V(X, \varepsilon)$. A image of $V(X, \varepsilon)$ by the geologic function g which assigns a unique geologic unit to every point in the 3-D space Ω shows a set of geologic units in ε neighbourhood of X (Figure 2):

$$
\begin{equation*}
g(V(X, \varepsilon))=\{g(x): x \in V(X, \varepsilon)\} . \tag{12}
\end{equation*}
$$

As the radius ε becomes small, the number of geologic units in $V(X, \varepsilon)$ decreases. When $g(V(X, \varepsilon))$ becomes the same set for all the smaller radii ε than a certain value, $g(V(X, \varepsilon))$ is called "geologic units neighbouring around X " and is denoted by $\min g(V(X, \varepsilon))$.

A function $G: \Omega \rightarrow 2^{B}$ which assigns min $g(V(X, \varepsilon))$ to X is called "neighbourhood function of function g " if $\min g(V(X, \varepsilon))$ exists for all points X in the 3-D space Ω (Figure 3).

2.2.2 Neighbourhood function of function g_{2}

The neighbourhood function can be expanded to various functions. The neighbourhood function of the function g_{2} is defined as follows.

A image of $V(X, \varepsilon)$ by the function g_{2} which assigns a unique minset to every point in the 3 -D space Ω shows a set of minsets in ε-neighbourhood of X :

$$
\begin{equation*}
g_{2}(V(X, \varepsilon))=\left\{g_{2}(x): x \in V(X, \varepsilon)\right\} . \tag{13}
\end{equation*}
$$

Figure 2. ε-neighbourhood of X.

Table 1. Relation between point X and surfaces.

Figure 3. Neighbourhood function of function g.

Figure 4. Geologic units neighbouring around a point X.
When $g_{2}(V(X, \varepsilon))$ becomes the same set for all the smaller radii ε than a certain value, $g_{2}(V$ $(X, \varepsilon))$ is called "minsets neighbouring around X " and is denoted by $\min g_{2}(V(X, \varepsilon))$.

A function $G_{2}: \Omega \rightarrow 2^{M}$ which assigns $\min g_{2}(V(X, \varepsilon))$ to X is called "neighbourhood function of function $g_{2} "$ if $\min g_{2}(V(X, \varepsilon))$ exists for all points X in the 3-D space Ω.

3. GEOLOGIC UNITS NEIGHBOURING AROUND A POINT

The geologic units neighbouring around a point on surface can be found using the neighbourhood function of function g_{2} and the function g_{1} (Figure 4). As an example, steps for finding geologic units neighbouring around the point X in Figure 4 are shown below.

Step 1; generate the relational code table from the logical model of geologic structure (Figure $1(\mathrm{c})$). This means that the function g_{1} is prepared.

Step 2; obtain the relation of the height between the point X and every boundary surface. If the point X is higher than a surface, the relation is expressed by " 1 ". If lower then the relation is " 0 ", if on the surface then the relation is "*". The relation between the point X and surfaces is shown in Table 1.

Step 3; find minsets neighbouring around the point X using the relation of the height between the point X and every boundary surface. The relation between a point and surfaces corresponds to subscript $d_{1} d_{2} \ldots d_{p}$ of minsets neighbouring around the point. When the point X is higher than the surface S_{i}, the minsets neighbouring around the point X is also in upper side of the surface. Therefore, d_{i} is " 1 " when the relation between the point X and surface S_{i} is " 1 ". Similarly, d_{i} is " 0 " when the relation between the point X and surface S_{i} is " 0 ". When the point X is on the surface S_{i}, the minsets neighbouring around the point X exist in both the upper side and lower side of the surface. Therefore, d_{i} is both " 1 " and " 0 ". According to the rule above, the minsets neighbouring around the point X in Figure 4 are m_{00} and m_{10}.

Step 4; derive geologic units from minsets neighbouring around the point X using the relational code table. In the case of this example, the geologic units neighbouring around the point X are b_{1} and b_{2}.

Figure 5. Geologic model.
Table 2. Logical model of geologic structure.

b_{0}	$*$	$*$	1
	S_{1}	S_{2}	S_{3}
b_{1}	0	0	0
b_{2}	1	0	0
b_{3}	$*$	1	0

Figure 6. Triangular mesh.
Table 3. Relational code table.

minset	unit
m_{000}	b_{1}
m_{001}	b_{0}
m_{010}	b_{3}
m_{011}	b_{0}
m_{100}	b_{2}
m_{101}	b_{0}
m_{110}	b_{3}
m_{111}	b_{0}

Table 4. Geologic units neighbouring around a point on surface.

	Coordinates			Triangular sides			Intersection line between surface and triangle		Relation of height			Geologic units in the neighbourhood			
	x	y	z	$P_{1} P_{2}$	$\mathrm{P}_{2} \mathrm{P}_{3}$	$P_{1} P_{3}$	$S_{1} \cap \Delta$	$S_{2} \cap \Delta$	S_{1}	S_{2}	S_{3}	b_{0}	b_{1}	b_{2}	b_{3}
P_{1}				1		1			1	1	*	1			1
P_{2}				1	1				1	0	*	1		1	
P_{3}					1	1			0	0	*	1	1		
P_{4}				1			1								
P_{5}					1		1		*	0	*	1	1	1	
P_{6}						1	1		*	1	*	1			1
${ }^{P_{7}}$				1				1	1	*	*	1		1	1
P_{8}					1			1							
P_{9}						1		1	0	*	*	1	1		1
P_{10}							1	1	*	*	*	1	1	1	1

4. CLASSIFICATION OF POINTS ON SURFACE

Using a geologic model of Figure 5, geologic units neighbouring around a point on surface are obtained and points on surface are classify as a group of points which compose a specific geologic boundary. Three boundary surfaces S_{1}, S_{2} and S_{3} are grid data and the logical model of geologic structure is given in Table 2.

First, the relational code table is prepared from the logical model of geologic structure (Table 3). Secondly, each grid cell is divided into two triangular meshes and following steps are implemented in each triangular mesh. As an example, the triangular mesh surrounded by a thick line in Figure 5 is used (Figure 6).

Step 1; assign a number to points on surface. P_{1}, P_{2} and P_{3} are assigned to each of triangular vertexes. P_{4}, P_{5} and P_{6} are given to each of points where three sides of the triangle and surface S_{1} cross. Similarly, the intersection points between three sides of the triangle and surface S_{2} are P_{7}, P_{8} and P_{9}, respectively. P_{10} is assigned to the point where S_{1}, S_{2} and triangle intersect.

Step 2; prepare a table to obtain geologic units neighbouring around the point (Table 4). "The relation between point and triangular sides" and "the relation between point and intersection line between surface and triangle" are the information which shows the position of the point. For example, if a point is on $P_{1} P_{2}$, the relation between the point and $P_{1} P_{2}$ is " 1 " and if a point is on the intersection line between S_{1} and the triangular mesh, the relation between the point and $S_{1} \cap \Delta$ is " 1 ".

Step 3; calculate the coordinates of each point and find geologic units neighbouring around the point by the proposed algorithm. P_{4} and P_{8} are outside of the triangular mesh in the case of this example.

Step 4; classify the points on surface as a group of points which compose specific geologic boundary using the completed table. For example, the points which compose the geologic boundary surface between b_{0} and b_{1} are P_{3}, P_{5}, P_{9} and P_{10}, which have b_{0} and b_{1} in the neighbourhood. The points which compose the geologic boundary line between b_{1} and b_{2} on the topographic surface S_{3} are P_{5} and P_{10}, which have b_{0}, b_{1} and b_{2} in the neighbourhood.

5. CONCLUSION

In the present work, a concept of geologic units neighbouring around a point on surface and a neighbourhood function which assigns geologic units neighbouring around a point to the point have been introduced to characterize a point on surface. The characterized points can be classified as a group of points which compose a specific geologic boundary. The algorithm for obtaining geologic units neighbouring around a point on surface was developed. Further, the points on surface were classified as a group of points which compose a specific geologic boundary by the algorithm. An algorithm for constructing geologic boundary surface and line from extracted groups needs to be developed to visualize a specific geologic boundary and utilize it for various analyses.

6 REFERENCES

Gill, A., 1976. Applied algebra for the computer science, Englewood Cliffs, N.J.: Prentice-Hall.
Masumoto, S., Raghavan, V., Yonezawa, G., Nemoto, T. and Shiono, K., 2004. Construction and visualization of a three dimensional geologic model using GRASS GIS. Transactions in GIS, 8(2), 211-223.
Sakamoto, M., Shiono, K., Masumoto, S. and Wadatsumi K., 1993. A computerized geological mapping system based on logical models of geologic structures. Nonrenewable Resources 2, 140-147.

Shiono, K., Masumoto, S. and Nemoto, T., 2004. Mathematical expression of geologic boundary based on logical model of geologic structure: closure of subset in metric space. Geoinformatics, 15, 65-73.

