
Abstract 
This paper overviews our research on digital 

preservation of cultural assets and digital restoration of 
their original appearance. Geometric models are digitally 
achieved through a pipeline consisting of scanning, 
registering and merging multiple range images. We have 
developed a robust simultaneous registration method and 
an efficient and robust voxel-based integration method. On 
the geometric models created, we have to align texture 
images acquired from a color camera. We have developed 
a texture mapping method to utilize laser reflectance. In an 
attempt to restore the original appearance of historical 
heritage objects, we have synthesized several buildings and 
statues using scanned data and literature survey with 
advice from experts.  
 
1. Introduction 

 
Currently, a large number of cultural heritage objects 

around the world are deteriorating or being destroyed 
because of natural weathering, disasters and civil wars. 
Among them, Japanese cultural heritage objects are quite 
vulnerable to fires and other natural disasters because most 
of them were constructed of wood and paper.  

One of the best ways to prevent them from loss and 
deterioration is to digitally preserve them. Digital data of 
heritage objects can be obtained by using computer vision 
techniques. Once these data have been acquired, they can 
be preserved permanently, and then safely passed down to 
future generations. In addition, such digital data is suitable 
for many applications, including simulation, restoration, 
and creating multi-media contents. Such digital contents 
can be viewed through the internet from anywhere in the 
world, without moving the objects nor visiting the sites. 

We have been working to develop such digital archival 
methods by using computer vision and computer graphics 
technologies [1]. Similar projects include: Stanford’s 
Michelangelo Project [2], IBM’s Pieta Project [3], and 

Columbia’s project [4], to name a few. Our project has a 
number of unique features; among them is its ability to 
digitize relatively large objects outdoor such as the 
Kamakura great Buddha, and Cambodia’s Bayon. This 
presents several challenges. Also, our project consists not 
only of geometric modeling but also of photometric and 

environmental modeling, as shown in Figure 1.  
The remainder of this paper is organized as follows. 

Section 2 briefly describes the outline of the geometric 
pipeline developed, a parallel simultaneous alignment 
algorithm and a parallel voxel-based merging algorithm. 
Section 3 describes a method to align observed textures 
from a digital camera with a range data for texture 
mapping. Section 4 reports our efforts to restore the 
original appearance of these objects using acquired digital 
data and the literature survey. Section 5 summarizes this 
paper.  

 
2. Geometric Modeling 
 

Several computer vision techniques, such as traditional 
shape-from-X and binocular-stereo, or modern range 
sensors, provide cloud of point information. The cloud of 
point information certainly carries three-dimensional 
information pertaining to observed objects. However, there 
is no structural information among these points. Namely, 

 
Representing Cultural Heritage in Digital Forms for VR Systems through 

Computer Vision Techniques  
 

Katsushi
#

 Ikeuchi,  Atsushi
＊

 Nakazawa,  Kazuhide
＃

 Hasegawa,  Takeshi
＃

 Ohishi   
# Institute of Industrial Science, The University of Tokyo 

＊Cybermedia Center, Osaka University 
{ki, k-hase, oishi}@cvl.iis.u-tokyo.ac.jp 

nakazawa@ime.cmc.osaka-u.ac.jp 

Partial observation

Geometry

Color images

Photometry　

Illumination

Environment　

Partial observation

Geometry
Partial observation

Geometry

Color images

Photometry　
Color images

Photometry　

Illumination

Environment　
Illumination

Environment　
 

Figure 1. Three components of our project.



there is no information to represent adjacency among the 
points. The first step of geometric modeling is to convert 
the cloud of points into a surface representation such as a 
mesh model.  

Since each observation provides only partial information, 
we have to combine these partial mesh representations into 
a whole geometric mesh representation. Thus, the second 
step in geometric modeling is to align these meshes so that 
their corresponding parts overlap one another (alignment).  

To accomplish this step, we have developed several 
simultaneous alignment methods [11, 12]. Traditional 
alignment employs pair-wise alignment. By repeating this 
pair-wise alignment, all the relation among range images in 
a data set is determined. When handling a large number of 
data set, error gradually accumulates along the path, and a 
large gap exists locally in the final result. For avoiding 
error accumulation in a certain part, this algorithm employs 
a simultaneous alignment method, which determines all 
alignment relations among a data set at once. These 
simultaneous alignments evenly distribute error among all 
the relations. 

Further, we also extended the algorithm into a parallel 
implementation so as to be able to align a very large data 
set [12]. The simultaneous algorithm, originally designed, 
requires all range images to be read into memory; even 
when the computation is distributed over a PC cluster, the 
amount of memory used on each PC is not reduced. For the 
parallel implementation, both time and memory 
performance have to be considered. 

We remove redundant or weak data dependency among a 
data set for efficient memory usage. A pair of range image 
images that does not satisfies all these three conditions will 
be removed as redundant relations. 

The bounding-boxes of two range images overlap each 
other. 

The angle, θ , between ray directions of two range 
images, is less than a threshold value. Here a ray direction 
is the optical axis of a range sensor for scanning the data. 

Two range images are adjacent and overlapping each 
other. 

Since these assumptions work, the initial positions of 
range images are accurately estimated. For this purpose, as 
the initial step for this parallel alignment algorithm, we 
execute a pair-wise alignment algorithm for all adjacent 
overlapping range images. 

We also make even distribution of the computational 
load over a PC cluster. The computational cost of a PC is 
estimated to be proportional to the number of vertices on 
the PC. By using this assumption, we assign range images 
to each PC. See [13] in details. 

 
Table 1. Computational time. 

 
 
In Table 1, the computation times with 1 processor and 

16 processors are described. The computation time with 16 
processors is approximately 8.4 times faster than that with 
1 processor for the hand model, and 8.9 times for the Great 
Buddha of Kamakura. As for the memory usage, we can 
reduce the amount of memory used decreases as the 
number of processor increases. 

As shown in Table 2, our method can reduce the amount 
of memory used in approximately 60% for the hand model 
and in approximately 43% for the model of the Great 
Buddha of Kamakura. See [12] in more details. 

 
Table 2. Amount of memory ratio. 

 
 
The third geometric modeling step is to integrate the 

pre-registered multiple range images and to compose one 
complete geometric model, a step usually called 'merging'. The 
procedure can be considered as extracting one surface from 
multiple overlapped surfaces. In the merging procedure, it is 
important to make the integration framework robust against any 
noise which may be in the scanned range images and can also be 
inherited from the registration procedure [16,17,18]. 

 Our method merges a set of range images into a 
volumetric implicit-surface representation, which is 
converted to a surface mesh by using a variant of the 
marching-cubes algorithm [14]. Unlike previous 
techniques based on implicit-surface representations, our 
method estimates the signed distance to the object surface 
by determining a consensus of locally coherent 
observations of the surface [15,16,17,18].  

We utilize octrees to represent volumetric implicit 
surfaces, thereby effectively reducing the computation and 
memory requirements of the volumetric representation 
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Figure 2. The World Buddha Library 



without sacrificing accuracy of the resulting surface. We 
originally design software that merges a relatively small 
data set. However, our target requires to merge a huge set, 
we decide to design our algorithm to run on a PC cluster; 
the cluster parallel-processes the merging algorithm for 
saving the computation time and utilizing a large memory 
space of many PCs. We produced one integrated digital 
Great Buddha with this software. The whole data set 
consists of 3.3 M points, and 5 M polygons that can be 
merged in approximately 20 minutes on the PC cluster. 

 By using this geometric pipeline, we have digitally 
archived Japanese Buddhas, including Asuka, Kamakura, 
Nara, and foreign ones, including Thailand’s Wat Si Chum 
and Cambodia’s Biyon. We are continuing this effort 
toward completing the world Buddha library, as shown in 
Figure 2, which digitally display transitions of Buddha 
shapes in time and region. 
 
3. Texture Mapping and Rendering 
 

The geometric model is vital information regarding the 
cultural heritage objects because it enables us to analyze 
object in details. In addition to the geometric model, 
surface color distribution (texture) is also very important 
for some kinds of cultural properties. We have developed a 
method for mapping texture based on laser reflectance. 

When a short-distance range sensors can be used, the 
most promising method is to calibrate the geometrical 
relationship between the image sensor and the range sensor 
before scanning using a calibration object. However, this 
method requires that the range and color sensors be fixed 
on the fixture once the relationship is calibrated. Further, 
the calibration-based method is accurate only around the 
position occupied by the calibration fixture. When a target 
object is very large, this method becomes unreliable due to 
the lens distortion. Thus, we need a method that does not 
rely on calibration. 

 Generally speaking, range sensors often provide 
reflectance images as side products of range images. The 
returned timing provides a depth measurement, while the 

returned strength provides a reflectance measurement. A 
reflectance image is a collection of the strength of returned 
laser energy at each pixel. This reflectance image is aligned 
with the range image because both images are obtained 
through the same optical receiving device. Commonly 
available range sensors, including ERIM, Preceptron, and 
our main sensor, CYRAX, provide this reflectance image. 

 We employ this reflectance image as a vehicle for the 
alignment of range images with color images [3,16]. 
Reflectance images share characteristics similar to color 
images due to the fact that both images are somehow 
related with surface roughness as shown in Figure 3. Since 
our CYRAX range scanner uses a green laser diode, 
reflectance edges can be observed along the boundary 
between two colors or material boundaries along difference 
reflectance ratios for this wavelength. Since different 
materials are of different colors, a discontinuity also 
appears in the color images. Jump edges along small 
ranges in a range image also appear as jump edges in a 
reflectance image as well as in a color image. Occluding 
boundaries are observed both in reflectance images and in 
color images. 

 Prior to the alignments, we paste the necessary 
reflectance edges onto the 3D geometric model. As 
mentioned above, since occluding boundaries vary 
depending on the viewing direction, edges along the 
occluding boundaries are first removed from the 
reflectance images. On the other hand, edges along the 
current occluding boundaries will be estimated from the 
3D geometric model and the current viewing direction. Our 
algorithm extracts them automatically, and uses them for 
the alignment. 

 We align edges extracted from reflectance images with 
those in color images so that the 3D position error of those 
edges is minimized by iterative calculation as shown in 
Figure 4. Extracted edges are represented as a collection of 
points along them. The alignment is done between 3D 
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reflectance points on 3D geometric model projected on the 
image plane and 2D color edge points in the 2D image. 

 To establish correspondence, the system finds the color 
image points that are nearest to the projected reflectance 
points. This operation is similar to the ICP operation. 

 To determine the relative pose that coincides with the 
position of 2D color edges and projected 3D reflectance 
edges, we use the M-estimator.  

 First the distance between corresponding 2D color edge 
points and 3D reflectance edge points is evaluated as 
shown in Figure 4 : where iz  is a 3D error vector which 
is on a perpendicular line from a 3D reflectance edge point 
to the stretched line between the optical center and a 2D 
color edge point on the image plane. 

θε sinii Z=  
where iZ  is the distance between the optical center and a 
3D reflectance edge point, and θ  is the angle between the 
color edge point and the reflectance edge point. 

 The system finds the configuration, P, which minimizes 
the total error, E, where ρ  is an error function. The 
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By solving this equation using the conjugate gradient 
method, we can obtain the configuration P that minimizes 
the error term and gives the relative relationship between 
the camera and the range sensor. Figure 5 shows the texture 
mapped Kamakura Buddha. Since this method minimizes a 
non-linear equation, we need an initial alignment. The 
initial alignment is given manually using our GUI. For the 
current implementation, relatively accurate alignment is 
necessary for rotation, but it is not the case for translation. 
 
 
 

4. Restoring Hypothesized Original State 
 

After we obtain the precise geometry and photometry 
information of the cultural assets in the current state, we 
can restore them to their hypothesized original state. In this 
section, we describe one of the examples: the restoration of 
the Nara Great Buddha and its main hall  

 
4.1 Restoring Nara Great Buddha 
 

Nara Great Buddha is the main statue of Toudaiji Temple. 
Unfortunately, the current statue is a rebuilt and repaired 
one because the original statue was burned and melted 
down due to a couple of civil wars. Accordingly, the shape 
of the current Great Buddha is different from that of the 
original one.  

By using the geometrical modeling shown in Section 2, 
we have acquired the complete 3D geometrical model of 
Buddha in its current state. From this model, we have 
attempted to synthesize the original state by morphing the 
3D geometry of the model.  

From some literature inherited at the temple, we know 
the sizes of various face parts such as the nose and mouth. 
Using these data, we design a two-step morphing 
algorithm.  

First, we globally change the scale of the whole portions 

 
(a) Current     (b) Hypothesized 

Figure 6. Restored result of Nara Great Buddha.

 

  

Figure 5. Texture Mapped Kamakura Buddha.. 



(e.g., Sitting Height, Face Length, Nose Length); these are 

gradually modified. In the 2nd stage, vertices are moved 
one by one iteratively, similar to the constraint propagation 
algorithm, using smoothness and uniform constraints. The 
2-stage morphing enables us to obtain the complete model 
of the original Great Buddha. Figure 6 shows the 3D 
models of the current (a) and the original Great Buddha (b). 
We can easily recognize that the original Buddha is larger 
and rather skinny. 

 
4.2 Restorating Toudaiji Main Halle 
 

The main hall of the Toudaiji Temple was built during 
the same decades as those of the Great Buddha (8th 
century). It was also rebuilt twice: in the 12th and 18th 
centuries. In the 12th century, Tenjiku architecture was 
imported from China and the main hall was rebuilt in a 
totally different architecture style. The rebuilding in the 
18th century followed the same new style. As a result, the 
style of the current main hall is entirely different from that 
of the original building.  

Fortunately, the Toudaiji temple has been displaying a 
miniature model of the original hall, constructed for the 
Paris Expo in 1900, as shown in Figure 7(a). We digitized 
it using the Pulsteck TDS-1500 and scaled it up to the 
original size as shown in Figure 7(b).  

Due to the limitation of resolution, the detail parts 
cannot be obtained precisely. According to Prof. Keisuke 
Fujii, an architecture professor at the University of Tokyo, 
one of the experts on building style in the era, the Toudaiji 
and Toushou-daiji Temples share a similar format. Here, 
the main hall of Toshoudaiji Temple were also built during 
the same period (8th century). After scanning various key 
parts of the main hall at Toushoudaiji, as shown in Figure 
14, we morphed these partial range data by expanding and 
shrinking the Touhoudaiji parts (Figure 8) to the scaled-up 
range data of the Toudaiji (Figure 7). The process was 
conducted by an extended alignment algorithm that allows 
scale change as well as configuration differences. Figure 9 
shows the current Nara Great Buddha main hall and the 
original one digitally restored by our method. 
 
5. Conclusion 
 

In this paper, we introduced our project to digitally 
archive and restore cultural heritage objects. Our project’s 
main goal is to develop a method of 'modeling from reality', 
in which the digital model of cultural properties is created 
by using various computer vision methods. For the 
observation of geometrical information, we used laser 
range finders and post process algorithms, including 
registrating and merging the range images. For the texture 
information, we have developed several texture mapping 
methods. For the short distance range sensors, we 

 
Figure 7. Miniature and its 3D scanned models.  

 
Figure 8. Partial models acquired at Tousyoudaiji.

 
(a) Current Toudaiji main hall built in 18AD. 

 
(b) Hypothesize 8AD Toudaiji main hall. 

 
(c) Hypothesized 8AD Nara Buddha in the 

hypothesized 8AD main hall. 
 

Figure 9. Digitally restored Nara Great Buddha. 



calibrated the relationship between the range sensor and 
the image sensor for complete texture alignment. For the 
long distance range sensors, we developed a non-calibrated 
texture alignment method by using laser reflectance 
features. Digital restoration of lost cultural heritage objects 
has a big advantage compared with other restoration 
methods such as physical construction of actual temples, 
because we can examine various hypotheses without any 
physical changes nor long building periods. We 
demonstrated the effectiveness of this method through the 
restoration of the Nara Great Buddha and its main hall. We 
are also conducting a project to create a digital library of 
the world great Buddhas, including three Japanese 
Buddhas, Sri Chum Buddha in Thailand, and Biyon’s in 
Cambodia. The models and restoration results constructed 
so far can be viewed at [21] 
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