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ABSTRACT 
 

Fractal theory as a means of achieving relationships between different scales, has gained popularity in 
last two decades. It has been proposed that the physics of atmospheric turbulence results in multifractal 
properties, which reflects in atmospheric phenomena, like cloud formation and rainfall. Especially, the 
modeling of the spatial and temporal variability of rainfall, which is very much discontinuous and violent in 
usual spatial-temporal scales, can gain substantially from fractal theories. In this paper, some results of 
multifractal analysis and modeling of spatial rainfall variability in Japan are presented. Two new modifications 
to the existing methods, that are intended to make the distributions more acceptable for operational purposes, 
are presented with some modeling results.  

 

1. INTRODUCTION 

Mostly due to the concerns of the local effects of global weather change, the 
interrelationships between global circulations related phenomena and the surface 
hydrological processes at watershed and smaller scales have become an important 
consideration of today. The general circulation scale analysis and forecasting tools have 
improved tremendously both due to the increasing sociopolitical importance of understanding 
the global warming and the exponentially increasing computing capabilities.  Investigations 
on the consequences of various climatic scenarios that are predicted by global and regional 
climatic models, at the watershed scale require means of relating the magnitude of various 
processes at different spatiotemporal scales.  Ideally the best means of achieving this 
relationship is perhaps the use of one of more of physically based atmospheric models 
running at increasingly smaller spatial and temporal scales, with the boundary conditions 
obtained from the larger scale analyses. However, in practice the operational hydrologist need 
more accessible and computationally economical means of downscaling of meteorological 
data. In response for this requirement, a number of researchers have developed stochastic 
means of downscaling the large-scale analyses and observations. Using fractal theory is one 
of such stochastic methods that gained popularity past two decades.   

While the fractal theory has been used in downscaling diverse types of geophysical and 
meteorological measures, including earth’s topography, atmospheric temperature, etc., 
perhaps the most popular candidate has been the modeling of rainfall and related phenomena 
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like cloud distributions. Rainfall process is among the geophysical fields that show the 
highest variability and discontinuity and this fact makes it difficult to use traditional 
techniques of scaling like Thiessen polygons or fitting of polynomial functions, which are 
based on a continuous and smooth spatial or temporal variations. On the other hand, fractal-
scaling theories are based on discontinuous mathematics so that they are inherently able to 
deal with the above complexities.   

Fractal behavior that is characterized by single parameter driven relationships between 
scales is termed as ‘simple scaling’.  Fields which needs infinite number of parameters to 
describe this ‘scaling’, due to the non-linear behavior of statistical moments, are known as 
‘multifractals’ and hence their scaling as ‘multiple scaling’.  It is well known that the rainfall 
behavior is best explained by multiple scaling as opposed to simple scaling [Schertzer and 
Lovejoy (1987), Gupta and Waymire (1990)]. Therefore, the rest of this manuscript is devoted to 
rainfall modeling using multifractal theory. Mathematically, random cascade processes 
produce multifractal fields. (An example in 2-dimension is given in figure 1.) Richardson 
(1922) laid down the basic idea of scaling and conservation of energy-flux between different 
cascade levels. The same conservation principal is applied to model rainfall quantity as a 
cascade process.  

 In the rest of this paper, one multifractal model, directly based on random cascade 
model, is presented. The model is applied to spatial rainfall of Japanese archipelago measured 
by gauge networks and meteorological radar to validate the rainfall-scaling phenomenon. 
Finally, two issues that are important for using multifractals in operational purposes, namely 
1) incorporating spatial heterogeneity as indicated by long-term averages of spatial rainfall 
and 2) preserving pixel-level temporal-correlations in fractal based spatial distributions are 
discussed.  

 

2. MULTIFRACTAL MODEL 

A random cascade process (figure 1) at the limit of large step sizes shows the following 
scaling property: 
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where Ri,� is the value of the field at the ith box at the scale �  (��L/l  where l is scale and 
L is the largest scale of interest.) and M(�,q) is the  statistical moment of order q at scale l.  
Thus, the power-law behavior of statistical moment with scale for given value of q, indicates 
fractal scaling.  The curvature of the scaling exponent indicates the degree of multiple scaling 
(as opposed to single scaling). Over and Gupta (1996) proposed the �-lognormal model to 
represent spatial rainfall as a cascade process. The cascade generator of the model is specified 
as:  
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X is a standard normal variable; � and �� are model parameters. This model treats 
zero-nonzero partitioning explicitly by the parameter �.   The parameters of the model are 
estimated using the first and second derivatives of the scaling exponent  �  q   i n equation 
1 (Over and Gupta, 1996).  
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3. ANALYSIS 
 

The Japan Meteorological Agency’s Radar-AMeDAS rainfall data is an hourly spatial 
rainfall database measured mainly by weather radar, but later calibrated using the 
countrywide rain gauge network. We demonstrate a means of distributing spatial rainfall 
amount given as a large-scale forcing in a high-resolution spatial domain, using this rainfall 
product averaged to a daily scale.  An area of 128x128 pixels (approximately 5kmx5km 
each) bounded by 39.65N 134.5W, 33.3S and 142.4375E was selected for this analysis. 
Firstly, the ability to represent the spatial variability using multifractal theory was tested by 
applying the equation 1. The statistical moment M(�,q) was computed for daily rainfall 
maps at different spatial scale, �   T hese results were tested for power-law behavior of 
statistical moments (e.g. figure 2). The linearity of the relationships in log-log scale shows 
that the rainfall fields indeed show fractal scaling properties. Further the non-linearity of the 
scaling exponents �(q) (figure 3.) indicates that the type of scaling is multiple (as opposed to 
simple).  

 

4. DOWNSCALING  PROCEDURE 

The typical application of multifractal theory to downscale a given time-series of large-
scale forcings is as follows: By means of data analysis, (as explained in the section before) 
some statistical relationships between large-scale forcing and values of model parameters (� 
and ��) are established. For the present case, it was found that only � shows a significant 
sensitivity to the large-scale forcing and hence �� was considered constant. In the operational 
phase, given a value of large-scale forcing, it is possible to obtain suitable model parameters 
by following the above relationships. Then a cascade simulation of seven steps (27=128) is 
done using the �-lognormal model to draw required cascade weights.  

The best approach to validate the above procedure is to use a series of observed rainfall 
snapshots to obtain spatially average rainfall time series and then use that series to run the 
model. Then the properties of the original (observed) spatial data and the spatial distributions 
obtained from the model can be compared. It should be noted that the above methodology is a 
stochastic approach and thus there is no one-to-one correspondence between the two 
quantities. Only ensemble statistical properties can be compared. Figure 4 shows the 
comparison of zero-fractions in observed and model generated distributions.  The reason for 
the good agreement of the zero fractions is the explicit treatment of zero rainfalls in the 
model.  

The cascade approach explained above can represent the spatial variability of rainfall as 
observed in real spatial rainfall snapshots and therefore produces realistic zero-fraction 
distributions and spatial correlations. However, this procedure does not take in to account two 
important spatiotemporal aspects of observed rainfall. The first is the negligence of spatial 
heterogeneity of rainfall as seen by long term averaged spatial rainfall observations: For 
example the summer rainfall in Japan (Figure 5) shows higher rainfall amount in the kii 
peninsula area compared with the north-eastern part. However, multifractal downscaling 
cannot treat this type of heterogeneity because the random cascade process is a homogeneous 
in the ensemble sense. The second is related to the negligence of the temporal correlations 
among the rainfall amount at a given pixel at adjacent time steps. The remainder of this paper 
will briefly discuss two new approaches proposed to rectify those two shortcomings. 
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5. SPATIAL HETEROGENEITY 

We propose the following scheme to incorporate spatial heterogeneity in to cascade 
disaggregation. Rainfall is considered a combined effect of two processes, namely, 1) a 
multifractal (stochastic) process which is highly variable in space but statistically uniform 
over the area concerned, at least at regional and smaller scales and 2) a deterministic process 
that represents the heterogeneity of rainfall in space that is used to ‘modify’ the above 
multifractal process. We assume that the latter process can adequately be represented by the 
long-term averaged rainfall.  

The following equation expresses the proposed model in mathematical notation 
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where Ri,j is the rainfall on the pixel (i,j)  and Gi,j is the component of that rainfall that is 
invariant over a long accumulation. Then, by definition, Mi,j is a component that is randomly 
distributed in the space so that M yields a uniform field at large accumulations. Instead of R, 
M is represented by multifractal model.  

An example for the scaling of field M is given on the right side of figure 2. It is obvious 
that field M also shows scaling properties like original spatial rainfall. However, the scaling 
properties of M are distinctly different from those of R. The multifractal properties and their 
regression relationships with large-scale forcing are now based on field M instead of R. In 
simulations, first a field M is constructed with cascading and then modified with long-term 
average field G to obtain R.  From the results shown in figure 6 and 7 it is clear that the new 
model can indeed capture the spatial heterogeneity in addition to the spatial variability that is 
represented by a traditional multifractal model.  

6. TEMPORAL CORRELATIONS 

In order to understand the nature of temporal correlations existing among rainfall 
amounts of same grid-box at adjacent time steps, a correlation analysis was performed. With 
the basic premise that the persistence of rainfall is correlated (positively) to the cascade-level 
and (negatively) to the time separation between two spatial datasets, the following analysis 
was performed: Observed rainfall was aggregated by averaging four-pixels at a time to 
obtain the opposite process of that shown in figure 1. This process allows the determination 
of cascade weights W, for each cascade step. Then at each cascade level, a correlation 
analysis was performed, making the simplifying assumption that all weights at the same 
cascade level at a give time, correlates similarly to the corresponding weights at an adjacent 
time step. This results in a single autocorrelation curve for the weights at each cascade level. 
Figure 7 shows such curves for a selected rainstorm, observed at hourly time step.  

It is clear that a Markov process of order one can sufficiently describe the correlations 
among cascade weights. However, since a cascade generator is required to be positive-
definite, it is difficult to directly utilize this relationship to implement a correlated-cascade 
scheme. Instead, logarithmically transformed weights are considered. As shown in Figure 8,  
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Figure 5. . Spatial heterogeneity shown by the daily
average rainfall intensities for May, based on radar-
AMeDAS data from 1995 to 1999. Units: mmday-1 

Figure 6. Quantile-quantile plots for
intensity distributions of observed
and modeled rainfall at two selected
locations shown in figure 5. 

Figure 4. Dry fraction distribution of
observed and simulated rainfall.  

Figure 3. Estimations of τ(q). Solid lines: rainfall fields
(R).  Dashed lines: modified fields (M). 

Figure 2.  The scaling properties of statistical moment, M(λ,
q) for rainfall snapshots. Left: Rainfall fields. Right:
Modified M fields. 

Figure 1. A random cascade process in
2-dim. At each step, a segment is
divided into b (=4) equal parts and
each part is multiplied by a value
(cascade weight) drawn from a
specified distribution ( generator of
the cascade).

 

Figure 7. Correlation among cascade weights at
adjacent time steps. Weights corresponding to each
cascade step are analyzed separately. Inset: Variation
of Markov parameter φ1 (Xi=X(i-1) φ1+Z) 
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these transformed weights also show excellent correlation structure, which can be modeled 
as a Markov Process.  Utilizing the lognormal correlations, the following scheme can be 
proposed to analyze and model a time-series of spatial rainfall snapshots.  The zero weighs 
can also be correlated by considering the conditional probabilities of occurrence of non-zero 
weight, with the occurrence of zero or non-zero weight at the previous time step. The 
mathematical formulation and most of the results are skipped in the present manuscript due 
to the space limitation. Figure 9 shows a selected sample of rainfall snapshots simulated  

using the proposed correlation scheme together with a sample from a cascade generation 
without considering the correlations. It clearly shows that the proposed correlation scheme 
improves the spatiotemporal behavior of simulated rainfall by mimicking the persistence 
found in observed storm data. 
 
 
7. DISCUSSION 

The main strength of cascade schemes in the context of spatial rainfall disaggregation is 
their inherent ability to represent high degree of variability and discontinuity. However, the 
products of using pure cascade process in two (spatial) dimension lack two important 
properties that are evident in observed spatial rainfall. They are 1) spatial heterogeneity 
revealed from long-term averaged spatial fields and 2) persistence of rainfall between 
adjacent time scales. In this paper we describe means of modifying cascade schemes to 
achieve latter two properties while retaining the former. Without directly dealing with 
dynamics of rainfall generation, these stochastic methods provide a means of mimicking the 
properties of rainfall of high spatiotemporal resolution.  
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Figure 8. A selected portion of a time-series of cascade simulated rain field. Top:

Typical cascade disaggregation. Bottom: Cascade with proposed correlation
scheme. Note the persistence of rainfall in the bottom series.  
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