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ABSTRACT 

 
We present a gridding algorithm for optimal determination of geologic surfaces toward 3D geologic 

modeling. The algorithm, coded in a Fortran program Horizon2000 and in a Visual Basic program 
Terramod2001, is designed to determine the smoothest surface that satisfies a given set of input data that 
include inequality constraints and slope information as well as normal equality constraints based on the penalty 
function method. The optimal surface is provided as a solution that minimizes the augmented objective function 
: (smoothness)+(penalty)×(goodness of fit), where the smoothness of surface is evaluated in a form of numerical 
integration, the goodness of fit is in a form of residual mean of squares, and the penalty is a parameter that 
controls the balance between the smoothness and the goodness of fit. Calculations for several types of input 
data reveal that the algorithm provides a powerful mean to determine geological surfaces consistent with a 
variety of observational data. 

 

1. INTRODUCTION 

 Many algorithms have been proposed for gridding of geological surfaces based on 
irregularly distributed observational data (e.g. Davis,1986; Jones et al.,1986). Most of all 
methods aimed at determination of reasonable surfaces z = f (x, y) that satisfy observed values 
zk at locations (xk, yk) (k=1,…, N) or zk = f (xk, yk). However, observation of strike-dip is 
important to know the attitude of the surface. The slope information should be used as 
constraints on the partial derivatives of the surface. Further, if a geologic unit that is 
stratigraphically upper than the surface is observed at an outcrop, we know that the surface 
lies below the outcrop. This type of information provides an inequality constraint for the 
surface. The purpose of this paper is to present an algorithm for determination of geologic 
surfaces using slope information and inequality constraints, which we have used for 3D 
geologic modeling. 
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2 AVAILABLE DATA IN THE FIELD SURVEY 

 There are many types of data available in the field survey. For the simplicity of 
explanation, we suppose a situation that we determine a surface  of a geologic horizon z = f (x, 
y) in a Cartesian coordinates with x-axis pointing towards the east, the y-axis pointing 
towards the north and the vertical z-axis. For an observation data point (xp, yp, zp), there are 
three possibilities that we can be use observational data for the surface determination.  

(1) Equality constraints: If the surface is exposed at a location (xp, yp, zp), the location 
provides an equality constraint for the surface: 

f (xp, yp) = zp                                                  (1) 

(2) Inequality constraints: If a geologic unit that is stratigraphically upper than the surface is 
exposed at a location (xp, yp, zp), the location provides an inequality constraint for the surface; 

   f (xp, yp) < zp ,             (2a) 

and if a geologic unit that is lower than the surface is exposed at a location (xp, yp, zp), the 
location provides an inequality constraint for the surface; 

   f (xp, yp) > zp .            (2b) 

 In order to distinguish three type of constraints (1), (2a) and (2b), we introduce a 
parameter lp defined by : lp = 0 for a constraint (1),  lp < 0 for (2a), and lp > 0 for (2b). 

(3) Slope information: Strike and dip of the surface measured at an outcrop (xq, yq, zq) provide 
constraints for the partial derivatives fx (x, y) with respect to x and  f y (x, y) with respect to y: 

   fx (xq, yq) = − tan θq sin φq,           (3a) 

   fy (xq, yq) = − tan θq cos φq,           (3b) 

where φq is the trend of the maximum slope and θq  is the dip angle. 
 
 
3 ALGORITHM 
 There may exist many feasible solutions that satisfy all observation (1), (2a), (2b), (3a), 
and (3b).  Assuming that  the geologic surface must be the smoothest one among the feasible 
solutions, we consider the surface determination as an optimization problem:  

 Find  an optimal solution f(x, y) that minimizes 

    J(f) = m1 ∫∫ fx (x, y) 2 + fy (x, y) 2 dx dy  

    + m2 ∫∫ fxx (x, y) 2  + 2 fxy (x, y) 2 + fyy (x, y) 2 dx dy              (4) 

 subject to 

f (xp, yp) − zp= 0       ; if lp = 0, 

f (xp, yp) − zp < 0        ; if lp < 0,     (p =1, …, P)                          

f (xp, yp) − zp > 0        ; if lp > 0, 
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 and 

fx (xq, yq) + tan θq  sin φq = 0       

fy (xq, yq) + tan θq  cos φq = 0     (q = 1, …, Q).                           

 In order to find the numerical solution of the problem by the penalty function method, 
we evaluate the functional J(f)  by a numerical integration using all values f11, f12, …, fNxNy at 
Nx × Ny nodes of a rectangular grid and approximate a function f (x, y)  by a surface of 
second degree using values at six neighboring nodes.  

3.1 Normal Gridding 

 For a set of  observation (1), we introduce an augmented objective function: 

Q(f ; α) = J(f) + α RH(f)                                              (5) 

where J(f) gives the smoothness of surface evaluated in a form of numerical integration, RH(f) 
gives the goodness of fit in a form of residual mean of squares,  

RH(f) = Σ (f(xp, yp) − zp)2 / nH ,              (6) 

α is a parameter called a penalty that controls the balance between the smoothness, and the 
goodness of fit and  nH is a number of data. As all terms in Q(f ; α) are represented in a 
quadratic form of values at grid nodes, the optimal solution f =( f11, f12, …, fNxNy) is given by a 
simultaneous equation  

            A f = b       (7) 

derived from ∂Q / ∂fij = 0 ( i = 1, …, Nx ; j = 1, …, Ny).  Figure 1 gives examples using data 
modified from TABLE B.3 in Johns et al.(1986) and TABLE 5.11 in Davis(1986). 

 

  
Figure 1.  Example (1). Left: data modified from TABLE B.3 in Johns et al.(1986). 

Right : data modified from TABLE 5.11 in Davis(1986).   
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3.2   Slope Information 
 When nD sets of strike and dip data are available in addition to the normal data (1), the 
augmented objective function is modified as follows:  

Q(f ; α) = J(f) + α RH(f) + β RD(f),         (8) 

where  

RD(f) = Σ {(fx (xq, yq) + tan θq sin φq)2 + (fy (xq, yq) + tan θq cos φq,)2 } / 2 nD.          (9) 

and β is a penalty that controls the balance between RH(f) and RD(f).  Figure 2 give an 
example using observational data at nine outcrops. All outcrops are located at 0 m and the 
surface dips at 45° eastward or westward. 

 

 
3.3   Inequality Constraints 
 When inequality constraints (2a) and (2b) are obtained in addition to equality ones (1), 
the residual or the difference between the surface f(xp, yp) and observation zp is given by  

                                                   f(xp, yp) − zp        ; if  lp = 0 

εp =       max { f(xp, yp) − zp , 0}   ; if  lp < 0                               (10) 

                              min { f(xp, yp) − zp , 0}   ; if  lp >0 

Therefore, RH(f) in the augmented objective function (5) and (8) should be evaluated by  

RH(f) = Σ εp 2 / nH                                                        (11) 

where nH is a number of data that do not satisfy constraints (1), (2a) and (2b). It is noted that 
the residual εp can be evaluated after a surface is determined. We apply the exterior penalty 
function method (Zangwill,1967) to solve the problem. The method requires us the iterative 
calculations with increasing series of penalties α 1, α 2, …, α T to find a surface consistent 
with inequality constraints as follows:  

(1) Suppose the t th solution f (t) is given,  

 

Figure 2.  Example (2) . 
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(2) Give an equality constraint  f(xp, yp) = zp  for the inequality constraint that surface f (t) does 
not satisfy or εp ≠ 0, 

(3) Construct the augmented objective function Q(f ; α t+1)  to find the ( t + 1) th solution f (t+1).  

 Figure 3 gives an example in which all types of constraints are included. 

 

 

 

 

 

 

 

 

 

 

4 APPLICATIONS 

 The algorithm is coded in a Fortran program Horizon2000 (Shiono et al., 2001) and in a 
Visual Basic program Terramod2001 (Sakamoto et al., 2001). The former is available at a 
download site of Japan Society of Geoinformaics ( http: // www.jsgi.org.jp/ ). 

 The program is useful for determination of geologic surfaces. One example is the fitting 
of a surface to strike and dip data. Figure 4 shows a surface determined only by strike and dip 
data digitized from a geologic map.  It is easy to see an outline of  folding structure and local 
variation of strike and dip. 

Figure 3.  Example (3). 

(1) location of outcrops 
p     xp    yp    zp    lp 
1      7    16    20    0 
2    19    80    37    1 
3    23    43    42    0 
4    87    23    45   -1 
5    84    85    55    1 
 
(2) slope information 
q     xp    yp    zp     φp     θp 
1    13    82   32    285   40 
2    28    35   45    220   30 
3    34      8   35    200   40 
4    47    83   48    285   30 
5    77    93   50    300   20 
6    64    59   65    220   20 
7    72    14   39    170   40 
8    90    47   45    150   30 

 
Figure 4.  Surface determined by strike and dip data digitized from a geologic map. 
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 Another important application is a efficient 
generation of DEM (Digital Elevation Model) 
from a topographic map (Noumi et al., 1999; 
Shiono et al., 2001). An elevation f(xp, yp)  at a 
point (xp, yp)  in a space between two successive 
contour lines h and H must be 

h <(xp, yp)<H. 

Based on this idea, we can generate quickly a 
DEM by assigning the inequality constraints to 
each point in a space between contour lines after 
scanning a topographic map. Figure 5 shows an 
example. 

 

5 CONCLUSION 
We present a gridding algorithm for optimal determination of geologic surfaces 

towards 3D geologic modeling. The algorithm is designed to determine the smoothest surface 
that satisfies a given set of observational data that include inequality constraints and slope 
information as well as normal equality constraints based on the penalty function method. The 
algorithm is coded in a Fortran program Horizon2000 and in a Visual Basic program 
Terramod2001. The calculations for several types of input data reveal that the algorithm 
provides a powerful tool to determine geological surfaces consistent with a variety of 
observational data. 
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Figure  5.  3D visualization of DEM 
generated from a topographic map. 
 


